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EXECUTIVE SUMMARY

This report presents a comprehensive overview of the activities carried out in Work Package
4 (WP4), specifically Task 4.3, of the RHODAS project, which focuses on the design and de-
velopment of a digital twin framework for key components of electric powertrains.

The developed framework comprises three individual digital twins: the inverter digital twin, the
e-motor digital twin, and the gearbox digital twin. The inverter digital twin models the electro-
thermal behavior of power electronics modules (SiC and GaN) to support performance moni-
toring and failure prediction. The e-motor digital twin captures the thermal behavior of the rotor
and stator of the RHODAS e-motor, enabling accurate simulation under various driving condi-
tions. The gearbox digital twin is based on a data-driven thermal equivalent circuit model that
estimates the gearbox oil temperature using a range of input data.

All digital twin models are implemented in both MATLAB/Simulink and C++ to enable seamless
integration into the RHODAS cloud platform, supporting both online and offline thermal moni-
toring and efficient computation.

The deliverable also includes extensive sensitivity analyses to investigate the behavior of the
e-motor, power inverter, and gearbox under different operating modes. This outcome delivers
a robust and scalable digital twin architecture that enhances monitoring, diagnostics, and pre-
dictive maintenance capabilities within the RHODAS electric vehicle platform.
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1 INTRODUCTION

1.1 DESCRIPTION OF THE DOCUMENT AND PURSUE

This document provides a comprehensive overview of the digital twin developments carried
out in Task 4.3 of the RHODAS project. The focus is on the creation and integration of digital
twin models for three key subsystems within the RHODAS electromechanical powertrain: the
T-type inverter, e-Motor, and gearbox. These components are intended to be integrated within
a single system, and their thermal behavior and interactions are critical to overall system per-
formance. Accordingly, the digital twin activities have been structured into three dedicated
parts, each focusing on one of these subsystems. The first part of the document details the
development of the inverter digital twin. This section describes the modeling of thermal behav-
ior based on power loss estimations and the application of thermal equivalent circuits. It also
outlines the integration of real-time data into the digital twin platform to enable accurate virtual
testing and condition monitoring of the T-type power converter.

The second part presents the e-Motor digital twin. This section focuses on the numerical sim-
ulation of the motor’s thermal dynamics using mathematical modeling techniques, including a
simplified Thermal Equivalent Circuit Model (TECM). The e-Motor model is structured using
experimental data and is designed to simulate the thermal behavior of both the stator and rotor
parts, capturing the thermal interaction between the different components.

The third part of the document describes the gearbox digital twin, developed based on both
simulation results and testbench data provided by the gearbox team. This section includes the
methodology for dataset integration, the design of a thermal model using the TECM approach,
and the application of numerical methods such as the 4th-order Runge-Kutta method and 3D
interpolation. The model is implemented in C++ and supports both offline and online compu-
tation, enabling predictive maintenance and system diagnostics. Each of these digital twin
models is part of an overarching architecture that captures power loss calculations and thermal
behavior, supporting comprehensive system-level analysis. By developing these digital twins,
the RHODAS platform aims to bridge the gap between physical hardware and virtual simula-
tion, offering a scalable and modular solution for advanced monitoring, predictive analytics,
and system optimization in power electronics and electromechanical systems.

1.2 WPs AND TASKS RELATED WITH THE DELIVERABLE

This deliverable pertains to the activities carried out under Task 4.3, titled Integration of Sys-
tem Models into a Complete Digital Twin, which is part of WP4 (Software Design and Devel-
opment of Digital Tools) within the RHODAS project.
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2 RHODAS Digital Twin Frameworks

The digital twin plays a transformative role in engineering by enabling the creation of virtual
replicas of physical systems, which can be used for monitoring, analysis, and optimization.
This technology allows engineers to simulate performance, predict failures and test design
modifications without the risks and costs associated with physical prototypes. By integrating
data from sensors and other sources, digital twins provide valuable insights into system be-
havior under various conditions, supporting data-driven decision-making throughout the prod-
uct lifecycle. As a result, they enhance efficiency, reduce downtime and contribute to more
sustainable and innovative engineering solutions.

Since one part of the RHODAS project aims to develop a T-type power converter that will be
integrated with the e-Motor and a gearbox, the digital twin activities in Task 4.3 have been
specifically focused on these three essential components. Recognizing the critical interaction
inside these subsystems, three digital twin frameworks have been designed by AU team to
accurately represent and simulate their thermal behavior. These frameworks enable detailed
modeling, performance analysis and virtual testing of the T-type inverter, the e-motor and the
gearbox within a digital environment. As illustrated in Figure 2.1, the digital twin architecture
captures both power loss calculations and the thermal equivalent circuit model of these critical
parts. In the following sections, the three distinct digital twin models are described in greater
detail.

Cloud
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Figure 2.1: Digital Twin Framework for the T-type Inverter, e-Motor, and Gearbox in the RHODAS Project.
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2.1 RHODAS INVERTER DIGITAL TWIN
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Figure 2.2: Inverter Digital Twin Framework: Power Loss Calculation, Equivalent Thermal Circuit Model, and Tun-
ing Scheme.

In the RHODAS inverter, where wide bandgap (WBG) devices such as GaN and SiC switches
are employed, monitoring and accounting for the junction temperature of these high-frequency
switches is critically important. In response to this requirement, the AU team has developed a
digital twin framework comprising two main components. The first component involves esti-
mating the power losses of the GaN and SiC modules using mathematical interpolation tech-
niques. These estimations are derived from experimental data collected from the RHODAS
converter under various operating conditions. By accurately modeling the power losses, this
step provides an essential foundation for thermal behavior analysis. The second component
integrates the calculated power losses into equivalent circuit models of the GaN and SiC mod-
ules. These models are carefully designed based on both manufacturer datasheets and ex-
perimental measurements, ensuring a high level of accuracy. Once these two components are
connected, the differential equations governing the thermal and electrical behaviour of the sys-
tem are extracted and implemented into C++ code. This code is then integrated into the
RHODAS cloud infrastructure as a component of the overall RHODAS loT platform. This digital
twin framework offers an effective balance between computational complexity and accuracy,
making it suitable for both online and offline applications. As illustrated in Figure 2.2, the pa-
rameters of the equivalent circuit model can be tuned using high-fidelity simulation tools such
as COMSOL Multiphysics, in conjunction with real-world data obtained from the final experi-
mental phase of the RHODAS project.

Therefore, the digital twin architecture of the inverter is structured around two main compo-
nents:
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i) Power Loss Estimation via Interpolation-Based Modelling

The first stage of the framework focuses on calculating the power losses in the GaN and SiC
modules. This is accomplished using mathematical interpolation techniques based on experi-
mental data collected from the real operation of the RHODAS converter. Specifically, a 3D
cubic spline interpolation algorithm has been implemented in C++ to estimate power loss as a
function of three key parameters: current (1), modulation index (mi), and switching frequency
(fs). This approach allows for accurate and continuous loss estimation across a wide range of
operating conditions without the need to precompute extensive lookup tables. For example,
for the low-power loading of converter employing Carrier-Based PWM (CBPWM), the interpo-
lation model was validated against simulation results provided by UPC, demonstrating a high
level of agreement.

i) Thermal Modeling through Equivalent Circuit Representation

In the second stage, the estimated power losses are fed into a detailed thermal model of the
inverter, implemented using lumped parameter Cauer-type equivalent circuits. These circuits
were designed specifically for both GaN and SiC modules, incorporating data derived from
component datasheets, COMSOL Multiphysics simulations, and practical experimental valida-
tion.

In the process of designing the equivalent circuit models for the SiC and GaN modules, as
depicted in Figures 2.3 and 2.4, all components, including thermal resistances, thermal capac-
itances and other parameters, were calculated based on the datasheet specifications. These
datasheets are the result of extensive experimental characterization and in-depth investiga-
tions conducted by the module manufacturers. As such, the parameters provided reliably re-
flect the real-world thermal behaviour of the modules under practical operating conditions. The
datasheets for the SiC and GaN modules are included in Appendices A and B, respectively.
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Figure 2.3: Thermal Equivalent Circuit of Sic-CAB450M12XM3 Designed Based on Datasheet Specifications from
Wolfspeed Cree
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Figure 2.4: Thermal Equivalent Circuit of GaN-GS66516T Designed Based on Datasheet Specifications from
GAN systems

Figure 2.5 presents the finalized thermal equivalent circuit model for the RHODaS high-power
inverter. This comprehensive model was constructed by first developing individual thermal
models for each system component and then integrating them based on the actual topology of
the inverter to accurately reflect the overall thermal dynamics of the system.
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Figure 2.5: Thermal equivalent circuit of T-type power converter with GaN and SiC.

To validate the accuracy of our simulation methodology, the AU-team re-simulated a previously
published study prior to developing the thermal equivalent circuit model for the supercapacitor
system. The reference publication used for this verification is shown in Figure 2.6. A compari-
son between our simulation results and those reported in the study is illustrated in Figure 2.7,
clearly demonstrating a high level of similarity and confirming the accuracy of our simulation
framework.

Following this successful validation, we proceeded to simulate the thermal equivalent circuit
model of the T-type power converter utilizing GaN and SiC technologies, as depicted in Figure
2.8.
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vehicle applications
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Table 2
Parameters values of 310 F and 1500 F supercapacitor cells. Ta R convection
+

Parameters 310F 1500F — I— a—s—Wv— T
o 22.5(°C) 175(C) ||_ _D
Rconvenclion 1 ( C/W) 35 ( CIW)
Ren 6.5 (“C/W) 42 (°C/W) _@*_ _)\Mr_
Cin 44(J/°C) 268(J/°C) |

N
Table 3 Cth
Characteristics of Maxwell 1500 F supercapacitor. T
Parameters Provided by Maxwell Measured I
Operating temperature range —40°C, +65°C - |
Equivalent series resistance ESR=0.47 (mS2) ESR=0.39 (mS2) —
Thermal resistance Rin=4.5 (°C/W) Rin=4.2 (°C/W) -
Thermal capacitance - Cn =268 (J/°C)

Fig. 5. Thermal-electric model of the supercapacitor.

Figure 2.6: Simulation procedure verification by re-simulating a published paper [1].
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a) Simulation result of reference [2]
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b) Simulation result of AU team simulations in MATLAB (Temperature [°C] vs Time [s])

Figure 2.7: Simulation result of re-simulating reference [1]

———

Figure 2.8: The simulated thermal equivalent circuit of the T-type power converter in MATLAB
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For the thermal equivalent circuit diagram of the GaN transistor, it is assumed that thermal
spreading is negligible, implying the absence of significant thermal coupling between adjacent
transistors. As a result, each GaN transistor can be treated independently, allowing for the
formulation of an individual equivalent thermal circuit for each device. This assumption
facilitates the derivation of differential equations governing the temperatures at each layer of
the structure.

It is important to note that the model under consideration is a lumped parameter Cauer model.
Consequently, the differential equations do not incorporate spatial dimensions, and
temperature estimations are limited to discrete thermal nodes. These nodes correspond to the
interfaces between the heat sink and the thermal interface material (TIM), the TIM and the
case, and, notably, the junction—regarded as the location of the heat source.

Presented in Figure 2.9, and Figure 2.10 are the MATLAB Simulink models of the GaN and
SiC thermal equivalent circuits simulating by AU team:

For the GaN:

Constart 1004 The thermal network of the GaN transistor on the heatsink with constant ambient temperature
Rampika
Variable steps
Sum of sine waves | :l_] N \
LeT } - —\? T_juncvon_GaN C]
»
' N . ’ ) (
2 N <L o ’\y T_ambient

I—Db—b—

3 A 5 B . P_lss_GoN , . Q_GoN_out ==

4 [273.15]

Kelvin --> Colcius

Input functions

|
m}
-"--.
P 4}
'l Thermal impedances GaN
I
fx=0 \ » <'
‘\
=
-C- .
) > PO

d
[ 273.15 |

Kelvin -> Cekcius

E———

s ~2H 2z
R T T
P_loss_GaN . Q_GaN out
RihJ-C-GaN1 RIhC-HS-GaN1 RthHS-A-GaN1 -7

Just a guess -> B Cth-J-C-GaN1 B Cih-C-HS-GaN1 Cth-HS-A-GaN1

Figure 2.9: MATLAB Simulink model of the GaN thermal equivalent circuits simulating by AU team

The Simscape implementation of the thermal equivalent circuit utilizes two primary component
types: thermal resistance and thermal mass. For instance, the label "Rth-J-C-GaN1" denotes
the thermal resistance from junction to case for a single GaN transistor.
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The employed Cauer model is relatively simple. Due to the lack of detailed information regard-
ing the internal packaging structure of the GaN device, the model considers the overall junc-
tion-to-case thermal resistance, which is specified as 0.27 K/W. This simplification is necessary
in the absence of more granular packaging data. However, reference documentation for a
comparable GaN device—specifically the GS66516T from GaN Systems—has been obtained.
The datasheet for this component includes a detailed Cauer model for the junction-to-case
thermal path, represented by four discrete layers, each characterized by individual thermal
resistance and capacitance parameters.

Below, in Figure 2.10, is an image illustrating the layer-by-layer Cauer model as provided in
the datasheet for the GS66516T GaN transistor:

R Ry Rs3 Ros

1 — 1
Cor T Co2 I Cos I Cos T

RC breakdown of Rgc

Junction Case

R, (°C/W) C, (W-s/°C)

Ry, = 0.008 C,, = 1.48E-04
Ry, = 0.124 C,, = 1.37€-03
Res = 0.130 C,s = 12.0E-03
Re, = 0.008 Coq = 3.7E-03

Figure 2.10: The layer-by-layer Cauer model as provided in the datasheet for the GS66516T GaN transistor




D4.3. Definition and implementation of a holistic digital twin of the IMD
Version v.6

; ZZRHODAS

Cth-HS-A-SiC

1 The thermal network of the SiC module on the heatsink with constant ambient temperature
‘Constant G0OW D
Ramp-ike
Variable sleps Db . .O
Input funclions. ’ T Tpncion St D
i By ]’ ‘H'H T_junction_SIC2
h 4
= o S »( )
F——— = = T amont
A P_loss_SiC1
E Q_SIC_out [:27 375 ‘
o—pS Kelvin —> Celcius.
A P_loss_SC2
— “Thermal impedances SiC module
— WA
B
u
{1 * ~ [/\/ \; | &
P_loss_SiC1
Rth_J-C_SiC1 RthC-HS-SiC1
—] ——
Just a guess -> Cth-J-C-SiC1 Cth-C-HS-SiC1
r—— AN <>
! Q_SiC_out
RthHS-A
3 A s = Al 8
<> A [; ; ;;
P_loss_SiC2
Rth_J-C_siC2 RthC-HS-SiC2

Just a guess -> E] Cth-J-C-SiC2 | cthcnssicz

Figure 2.11: MATLAB Simulink model of the SiC thermal equivalent circuits simulating by AU team

The underlying modeling approach remains consistent with that of the GaN device. However,
since the SiC power module (CAB450M12XM3 from Wolfspeed) integrates two SiC transistors,
these have been configured to share a common heatsink-to-ambient thermal resistance within
the thermal equivalent circuit.

In contrast to the GaN datasheet, the datasheet for the SiC module does not provide details
regarding the internal layer structure of the packaging. Consequently, further investigation into
the physical composition of the module has not been pursued. Nevertheless, a relevant study
published by Aalborg University presents a detailed Cauer model for a conventional SiC power
module, offering significant insights. Notably, the study includes the modeling of temperature-
dependent thermal parameters across the multilayer structure. Inspired by this, the current
thermal model incorporates a mechanism to account for temperature dependency in the ther-
mal resistance. Note that, the label "Rth-J-C-GaN1" represents the thermal resistance from
the junction to the case of a single GaN transistor. Similarly, "RthC-HS-GaN1" denotes the
thermal resistance from the case to the heatsink, and "RthHS-A-GaN1" refers to the thermal
resistance from the heatsink to the ambient environment. In parallel with each thermal re-
sistance, there are corresponding thermal capacitances—"CthJ-C-GaN1", "CthC-HS-GaN1",
and "CthHS-A-GaN1.

A fitted function representing the thermal conductivity of the SiC die has been implemented
based on data extracted from the article in reference 2 titled "Thermal Characterization of SiC
MOSFET Module Suitable for High-Temperature Computationally-Efficient Thermal-Profile
Prediction”. The function was derived using MATLAB's Curve Fitter Toolbox. In Figure 2.12,
an image is provided illustrating the configuration of the temperature-dependent thermal re-
sistance as implemented in the model.
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Tj_1. Rth jc SiC1_die

Tj_1

T_junction1

T_junction2 ,

Rth J-C SiC2
Figure 2.12: The configuration of the temperature-dependent thermal resistance

The implemented Simscape component for modeling temperature-dependent behavior is a
variable thermal resistance. The corresponding Simulink block defines this resistance as a
function of the junction temperature, enabling dynamic adjustment of thermal resistance in
response to temperature changes.

2.1.1 SENSITIVITY ANALYSIS OF THE GAN AND SIC SWITCHES JUNCTION
TEMPERATURE

As part of Task T4.3, a comprehensive sensitivity analysis was performed focusing on the
junction temperature of both GaN and SiC switches. The objective of this analysis was to de-
lineate the operational boundaries of the thermal management system and to evaluate the
influence of various thermal system parameters on the junction temperature, a critical perfor-
mance and reliability indicator for power semiconductor devices.

Through systematic variation of selected parameters, the sensitivity analysis provides insight
into how changes in thermal resistances, heat capacities, ambient conditions, and power dis-
sipation impact the thermal response of the system. This approach enables identification of
the most influential parameters, thereby supporting design optimization and risk assessment
in thermal design.

The consolidated results of the sensitivity analysis, reflecting the thermal response under dif-
ferent parametric variations, are presented in Figures 2.13-2.20. These figures collectively
demonstrate the thermal system's robustness and highlight the key factors that govern the
thermal behavior of the GaN and SiC devices under realistic operating conditions.
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Figure 2.13: Sensitivity Analysis of the GaN Switches Junction Temperature: Variation in Switching Losses
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Figure 2.17: Sensitivity Analysis of the GaN Switches
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Figure 2.18: Sensitivity Analysis of the SiC Switches Junction Temperature: Variation in RthHS-A-SIiC
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Figure 2.19: Sensitivity Analysis of the GaN Switches Junction Temperature: Variation in TA
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Figure 2.20: Sensitivity Analysis of the SiC Switches Junction Temperature: Variation in TA
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With thermal equivalent circuit diagrams established for both the GaN and SiC devices, the
next step involves expressing these models through differential equations. This mathematical
representation is essential for developing a C++ implementation capable of solving the thermal
profiles numerically over time.

The derivation of these differential equations is documented in T4.3. The method is grounded
in the electrical analogy between thermal and electrical domains, wherein:

e Temperature is analogous to voltage

o Heat flow corresponds to current

e Thermal resistance parallels electrical resistance

e Thermal capacitance is equivalent to electrical capacitance

This analogy allows the thermal behavior of the system to be described using equations struc-
turally similar to those in RC electrical circuits. Each node in the network contributes a first-
order differential equation, and the full system can be represented as a set of coupled ordinary
differential equations (ODES), describing the time evolution of temperature across the different
layers and interfaces.

These equations serve as the basis for the numerical solver to be implemented in C++, where
methods such as Euler or Runge-Kutta integration schemes may be used to simulate transient
thermal behavior under various operating conditions.

As previously illustrated, the calculation of power losses in the GaN and SiC modules is based
on real measurement data. To enable accurate estimation across a range of operating condi-
tions, an interpolation technique is employed.

To identify the most suitable interpolation method, a variety of interpolation techniques were
simulated and evaluated. As depicted in Figure 2.21, a comprehensive analysis was conducted
to assess both the accuracy and computational efficiency of each method. This evaluation is
essential to ensure that the selected technique offers a balanced trade-off between numerical
precision and processing speed, particularly for real-time or iterative simulation environments.
The outcome of this analysis informs the selection of the interpolation approach used in the
current thermal model, contributing to more reliable and computationally efficient estimation of
switching and conduction losses in the GaN and SiC modules.
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Figure 2.21: Comprehensive Analysis Was Conducted to Assess both The Accuracy and Computational Effi-
ciency of Each Interpolation Method

By using Kirchhoff's Current Law, we obtain this system of linear differential equations for the
GaN and SiC:
For the GaN part we can obtain:
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For the SiC part we can obtain:
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The obtained differential equations are solved by employing the Runge-Kutta method of order
4. The following section of the program addresses the solution of the system of differential
equations corresponding to the GaN model:
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54 //step size for approximation

S5 // float h = 0.001;

56

57 //Approximation for T_a

58

59 float al - -k1*Ta_GaN + k1*Tb_GaN + ké*p_loss_transistor_Gal;

6@ float bl = -ki1*(Ta_GaN + (h*@.5)*al) + k1*(Tb_GaN + (h*@.5)*al) + ké*p_loss_transistor_GaN;
61 float cl = -ki1*(Ta_GaN + (h*2.5)*bl) + k1*(Tb_GaN + (h*@.5)*bl) + ké*p_loss_transistor_GaN;
62 float dl1 = -k1*(Ta_GaN + h*cl) + k1*(Tb_GaN + h*cl) + k6*p_loss_transistor_GaN;

63

64 Ta_GaN = Ta_GaN + (h/6.@8)%*(al+2*b1+2%cl+dl);

65

66

67 //Approximation for T_b

68

69 float a2 = k2*Ta_GaN - (k2+k3)*Tb_GaN + k3*Tc_GaN;

70 float b2 = k2*(Ta_GaN + (h*@.5)*a2) - (k2+k3)*(Tb_GaN + (h*@.5)*a2) + k3*(Tc_GaN + (h*@.5)%a2);
71 float «¢2 = k2*(Ta_GaN + (h*@.5)*b2) - (k2+k3)*(Tb_GaN + (h*@2.5)*b2) + k3*(Tc_GaN + (h*2.5)*b2);
72 float d2 = k2*(Ta_GaN + h*c2) - (k2+k3)*(Tb_GaN + h*c2) + k3*(Tc_GaN + h*c2);

73

74 Tb_GaN = Tb_GaN + (h/6.8)*(a2+2*b2+2%c2+d2);

75

76

77 //Approximation for T_c

78

79 float a3 = k4*Tb_GaN - (k4+k5)*Tc_GaN + k5*T_amb;

80 float b3 = k4*(Tb_GaN + (h*@.5)*a3) - (k4+k5)*(Tc_GaN + (h*@.5)*a3) + k5*T_amb;

81 float <3 = k4*(Tb_GaN + (h*@.5)*b3) - (k4+k5)*(Tc_GaN + (h*©.5)*b3) + k5*T_amb;

82 float d3 = k4*(Tb_GaN + h*c3) - (k4+k5)*(Tc_GaN + h*c3) + k5*T_amb;

83

84 Tc_GaN = Tc_GaN + (h/6.@)*(a3+2%b3+2%c3+d3);

85

Lines 59-62 of the program implement the iterative numerical solution of the first differential
equation, expressed as:
ar, -1 1

1
= -T-I— nT 4+ —>"0);
dt R,-C, “ R,.C, " C, @i

Lines 69-72 correspond to the numerical solution of the second differential equation, while
lines 79-82 address the third. The Runge-Kutta method of order 4 is employed for solving
these equations. An identical approach is used for the SiC model, which comprises five differ-
ential equations rather than three.
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Figure 2.22: The Junction Temperature Results of Both Gan and Sic Transistors
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As shown in figure 2.22 the junction temperature of both GaN and SiC transistors as a function
of a 100 W power loss in the GaN and 600 W in the SiC. The resulting temperature profiles
are compared to MATLAB Simulink simulations and analytical solutions. The impact of apply-
ing a step-function input is also demonstrated in figure 2.23.
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Figure 2.23: The Junction Temperature Results of Both Gan and Sic Transistors with Variable Input

It is essential to define the initial condition, namely the initial temperature. The simulations are
based on the assumption that the power module is at ambient temperature prior to the start of
operation. Ambient temperature is included as an input parameter to the function.

To incorporate temperature-dependent thermal impedances, the temperature calculation func-
tion is implemented to allow parameter updates based on previously computed values. Param-
eters such as Rth1, Cth2 and others that exhibit temperature dependence are updated accord-

ingly.

An example is provided below illustrating the update of parameters "Rthl 1" and "Rthl_2"
within the SiC model, representing the thermal resistances from the junction to the case of two
SiC transistors:

116
117
118
119
120
121
122
123

float Rthl_1
float Rthl 2

= data[@]*188/(a*exp(b*Tal_SiC) + c*exp(d*Tal_Si(C));
= data[@]*18@/(a*exp(b*Ta2_SiC) + c*exp(d*Ta2_SiC));

float Rth2 = data[1];
float Rth3 = data[2];

float Cthl =
float Cth2 =
float Cth3 =

data[3];
data[4];
data[5];

The two-term exponential function used is derived via MATLAB'’s Curve Fitter Toolbox.
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The main function (main()) in the file main_LowPower.cpp includes calls to the class member
function calc_T_junction_GaN() from the following object instances: GaN_1 through GaN_6:

94 T_GaNl = GaN_1.calc_T_junction_GaN(Ta_GaNl, Tb_GaNl, Tc_GaNl, p_loss_GaN, T_amb, GaN_eq::Data_GaN_1);
95 T_GaN2 = GaN_2.calc_T_junction_GaN(Ta_GaN2, Tb_GaN2, Tc_GaN2, p_loss_GaN, T_amb, GaN_eq::Data_GaN_2);
96 T_GaN3 = GaN_3.calc_T_junction_GaN(Ta_GaN3, Tb_GaN3, Tc_GaN3, p_loss_GaN, T_amb, GaN_eq::Data_GaN_3);
97 T_GaN4 = GaN_4.calc_T_junction_GaN(Ta_GaN4, Tb_GaN4, Tc_GaN4, p_loss_GaN, T_amb, GaN_eq::Data_GaN_4);
98 T_GaN5 = GaN_S5.calc_T_junction_GaN(Ta_GaNS, Tb_GaNS, Tc_GaNS, p_loss_GaN, T_amb, GaN_eq::Data_GaN_5);
99 T_GaN6 = GaN_6.calc_T_junction_GaN(Ta_GaN6, Tb_GaNé, Tc_GaN6, p_loss GaN, T_amb, GaN_eq::Data_GaN_6);

The use of C++ enables modular and reusable implementation, allowing each function to op-
erate independently with distinct parameters. This facilitates accurate modeling in cases where
power losses differ among transistors, resulting in varying local interface temperatures.

The function calc_T_junction_GaN() accepts input parameters specific to each GaN transistor,
such as thermal impedances contained in data structures like Data_GaN_1. The class imple-
menting this functionality is named GaN_eq.

Figure 2.24 is provided to demonstrate the individualized thermal parameter handling for each
GaN transistor.
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Figure 2.24: The Junction Temperature Results to Demonstrate the Individualized Thermal Parameter Handling
for each Gan Transistor

A corresponding header file defines the classes associated with temperature calculation for
the GaN model, as follows:
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17

18 class GaN_eq {
19
2 public:
21
22
24 static float Data_GaN_1[5];
25 static float Data_GaN_2[&];
26 static float Data_GaN_3[6];
27 static float Data GaN 4[6];
28 static float Data_GaN_S[&];
29 static float Data_Gal_6[5];
3@
3
a2 float calec_T_junction_GaN(floath Ta_GaN, floatd Tb_GaM, floath Tc_GaN, float p_loss_transistor_GaN, float T_amb, float Data[6]);
33
oSl

The same structural and functional approach is applied in the function calc_T_junction_SiC()
for SiC modeling.

Given the requirements of WP4 and Task 4.3 to model both high-power and low-power loading
conditions of the converter, separate C++ programs have been developed. The file naming
convention distinguishes the two models, using suffixes such as _HighPower.cpp and _Low-
Power.cpp.

With both temperature modeling frameworks in place, the next step involves the inclusion of
power loss calculations. Simulation data provided by UPC includes power losses generated
by two modulation techniques: Space-Vector PWM (SVPWM) and Carrier-Based PWM
(CBPWM). The data suggests that SVPWM is used for the high-power converter, while
CBPWAM is applied to the low-power operation mode. GaN transistors are not included in the
high-power operation mode, as SVPWM is not applied to them.

The power loss is modeled as a function of three variables: current (1), modulation index (mi),
and frequency (fs, assumed to be sample frequency rather than switching frequency). A dedi-
cated function using cubic spline interpolation has been implemented in C++ to compute power
losses for arbitrary input values. The decision to perform interpolation programmatically, rather
than generating a lookup table via MATLAB, ensures dynamic adaptability to input parameters.

Although the interpolation spans three dimensions, the process follows a structured approach:
interpolation is first performed along the x-axis (mi) for each combination of y and z (I and fs),
followed by interpolation along the y-axis for each fs, and finally along the z-axis. This results
in an interpolated value for the power loss at the desired coordinate (mi0,l0,fs0), (mi_0, I_0O,
fs_0), and (mi0,l10,fs0).

A 3D plotis provided in figure 2.25 to visualize the power loss profile with CBPWM as a function
of mi and | at fs=75fs = 75fs=75 kHz, alongside a comparison with results generated in
MATLAB by UPC.
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Figure 2.25: The Power Loss Profile with CBPWM As a Function if mi and | at Fs=75fs = 75fs=75 kHz

Finally, two diagrams illustrate the structure of the main() function in the respective C++ pro-
grams for the high-power and low-power converters. These diagrams have been created using
Draw.io for clarity.

A folder titled “RHODaS WP4” has been compiled, containing supporting materials including
relevant articles, MATLAB files and simulation models, documentation of the development pro-
cess for the digital twin and results demonstrating the current status of the C++ implementa-
tion.

For the high-power loading conditions the design of functions are shown in Fig. 2.26.

allFunctions_HighPower.h

. class P_loss{}

. class SiC_eq{}

Measurements

Ambiant temperature [degC]
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Figure 2.26: The Design of the main () Function for the High-Power C++ Code

For the low-power loading conditions the design of functions are shown in Fig. 2.27.
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allFunctions_LowPower.h

. class P_loss{}
. class GaN_eqf}
. class SiC_eqf}
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Figure 2.27: The Design of the main () Function for the Low-Power C++ Code

2.2 RHODAS DIGITAL TWIN FOR E-MOTOR

This section presents the development process and implementation details of a digital twin for
the RHODaS electric motor, designed as part of the RHODaS project. The purpose of the
digital twin is to simulate the thermal behavior of the motor under various operating conditions.
The system is implemented in C++, employing both four-dimensional linear interpolation and
the 4th-order Runge-Kutta method to accurately simulate temperature dynamics over time.

The foundation for the digital twin is a Simulink model provided by Valeo, which represents the
physical and thermal behavior of the electric motor. This model includes six inputs and two
outputs:

The four variable inputs:
e PWM_Torque_ref (Torque)

o PWM_Speed (Speed)
e PWM_Trotor (Rotor temperature)
e PWM_Tcopper (Stator temperature)

Two fixed inputs, which are held constant throughout simulations.
e Vdc

e Tamb_air C

The model outputs:
e P1_stator: power losses in the stator.

e P2_rotor: power losses in the rotor.
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Figure 2.28: Simulink Model of the RHODaS Electric Motor Representing Thermal and Physical Behavior

In order to build a reliable interpolation model, a large dataset was generated using a custom

script. The script systematically varies one input parameter at a time while evaluating all pos-
sible combinations, based on the following ranges:
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Figure 2.29: The Effect of Torque, Speed, and Temperatures on Stator Losses
e Torque range: 20 to 500 (steps 20)
e Speed range: 1000 to 18000 (steps 1000)
[

Temperature rotor: -40 to 180 (steps 20)
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e Temperature stator: -40 to 200 (steps 20)
This results in a total of 70,200 unique data points.

Figure 2.29 and Figure 2.30 show a series of 2D plots that illustrate how each of the four input
parameters, torque, speed, rotor temperature, and stator (copper) temperature, affects the

stator losses and rotor losses, respectively.
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Figure 2.30: The Effect of Torque, Speed, and Temperatures on Rotor Losses
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Each subplot isolates one input parameter while implicitly showing the distribution of output
values across its range. The plots reveal clear nonlinear trends, such as the increase in losses
with torque and speed, as well as the temperature dependency of both stator and rotor losses.

Figure 2.31 and Figure 2.32 shows this analysis by presenting 3D surface plots of the same
relationships. These figures capture the interactions between pairs of input parameters and
how they jointly influence the losses in the stator and rotor.

The visualizations demonstrate the complex dependency of power losses on operating condi-
tions, thereby justifying the use of a multi-dimensional interpolation approach in the digital twin
model.
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Figure 2.31: 3D Surface Visualization of the Influence of Input Parameter Interactions on Stator Losses
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Figure 2.32: 3D Surface Visualization of the Influence of Input Parameter Interactions on Rotor Losses

With the dataset generated and analyzed, the next step was to develop a thermal equivalent
circuit model for the motor. This model simplifies the heat transfer dynamics between the sta-
tor, rotor, and ambient temperature using thermal resistances and capacitances.
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Figure 2.33: Thermal Equivalent Circuit Representing Heat Transfer Between Stator, Rotor, and Ambient Environ-

ment
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Figure 2.33 shows the simplified thermal equivalent circuit, where power losses from the Sim-
ulink model serve as heat sources, and the changes in rotor and stator temperatures are ob-
served over time.

The parameters that were used for the thermal conductances and capacitances in the thermal
equivalent circuit can be seen below.

Thermal conductances
w
*  Gerio =85+
w
* Gpoo =94
* G2 = 15%
Thermal capacitances
= L
* Cpp = 8500
= L
* Cenp = 5300
Figure 2.34 displays the output of the thermal simulation based on these parameters. It

shows how temperature varies over time, verifying the physical consistency of the thermal
network.
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Figure 2.34: Temperature Evolution Over Time in the Thermal Equivalent Circuit Simulation
Based on the thermal equivalent model, the following differential equations were derived.
Differential equations for T1 (stator):

dt  Cepy \

Rth12 Rtth

Differential equations for T2 (rotor):
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Figure 2.35: Simulated Rotor and Stator Temperature Progression Using Runge-Kutta Solution of the Thermal

Model

These equations were initially implemented in MATLAB using the 4th-order Runge-Kutta
method to confirm accuracy. The power losses used in these equations match the ones ex-
tracted from the Simulink model.

Figure 2.35 shows the temperature progression of both the rotor and stator over time, when
compared with Figure 2.34 it validates the correct implementation of the mathematical model.

Once validated in MATLAB, the model was translated into a C++ program. The program is
capable of interpolating power loss values for arbitrary input combinations using 4D linear in-
terpolation and subsequently computing the thermal response of the system over time.

The program workflow is as follows:

1.

2.

3.
4.

5.

Load Dataset: The data must be stored in a CSV file (default: data_v4.csv) in the fol-
lowing format: Torque; Speed; T_rotor; T_copper; P1_stator; P2_rotor.

User Input: The program prompts for four inputs—torque, speed, rotor temperature,
and copper (stator) temperature.

Interpolation: The function Lin_interp4() performs interpolation within the input space.
Thermal Simulation: The interpolated losses are used to compute temperature changes
over a 6000-second simulation, with a 1-second time step.

Output: Results are written to a CSV file (P_losses.csv) for further analysis.

The following parts of the code show how the program loads the dataset and adjusts the file
separator if necessary:
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main() {

if (!load _csv_data("data v4.csv")) return 1;

while (std::getline(ss, cell, ';")
cell = trim_non_printable(cell);

Should the input values fall outside the dataset range, the program will return an error mes-
sage: "Interpolation error: Input out of bounds!"

When the program starts, it attempts to load the CSV file. If the file is missing, incorrectly
formatted, or contains invalid data (e.g., non-numeric text in numeric fields or the wrong num-
ber of columns), the program will display an error and stop execution.

If the data loads successfully, each row is stored in a global table. All unique values of torque,
speed, rotor temperature, and copper temperature are also stored to define the valid interpo-
lation range.

After loading the file, the program enters a loop where the user is prompted to enter four inputs:

1. Torque

2. Speed

3. Rotor temperature

4. Copper temperature
If the interpolation is successful, the program uses the estimated losses to perform a thermal
simulation over a period of 6000 seconds with a time step of 1 second. The simulation is based
on the validated 4th-order Runge-Kutta solver and the thermal RC model previously described.

Figure 2.36 shows the initial portion of the rk4_thermal_sim() function, where all relevant ther-
mal parameters such as capacitances, resistances, and initial conditions are defined in C++.
These parameters directly reflect the values used in the Simulink thermal model.

rk4_thermal_sim( P1_stator, P2_rotor, T_amb = 100.0f) {
t_end = 6000;
dt = 1.0f;
T_stator = 25.0f;
T _rotor = 25.06f;

Rth_16 = 1.ef / 85.0f;
Rth_20 = 1.ef / 9.ef;
Rth_12 = 1.ef / 1.5f;
Cth_1 = 8500.0f;
Cth_2 = 5300.6f;

Figure 2.36: Initialization Section of the rk4_thermal_sim() Function Defining Thermal Parameters in C++

After the simulation, results are exported to a file named “P_losses.csVv’, which stores the cal-
culated rotor and stator temperatures at each time step.
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Figure 2.37 shows the implementation of the full 4th-order Runge-Kutta method in C++. The
function iteratively calculates the temperature of the rotor and stator based on the interpolated
power losses and the predefined thermal network. The logic includes four intermediate slope
evaluations (k1—k4) to improve the accuracy of the simulation.

for (int 1 = @; i <= t_end; ++i) {
outputFile << i << ","™ << T_rotor << "," << T_stator << "\n";

auto f1 = [&](float T1l, float T2
return (1.ef / Cth_1) * (P1_stator + (1.0f / Rth_12) * (T2 - T1) + (1.ef / Rth_10) * (T_amb - T1));

>

auto 2 = [&](float T1, float T2
return (1.ef / Cth_2) * (P2_rotor + (1.0f / Rth_12) * (T1 (1.ef / Rth_20) * (T_amb - T2));

k1l T1 = dt * f1(T_stator, T_rotor);

k1_T2 = dt * f2(T_stator, T_rotor);

k2_T1 = dt * f1(T_stator + ©.5f * k1_T1, T_rotor + @.
k2_T2 = dt * f2(T_stator + ©8.5f * k1_T1, T_rotor + @.
k3_T1 = dt * f1(T_stator + ©.5f * k2_T1, T_rotor + @.
k3_T2 = dt * f2(T_stator + ©.5f * k2_T1, T_rotor + @.
k4 _T1 = dt * f1(T_stator + k3_T1, T rotor + k3_T2);
k4 _T2 = dt * f2(T_stator + k3_T1, T_rotor + k3_T2);

T stator += (1.0f / 6.0F) * (k1. T1 + 2.0f * k2 T1 + 2.8f * k3_T1 + k4 T1);
T_rotor += (1.0f / 6.0f) * (k1_T2 + 2.0f * k2_T2 + 2.0f * k3_T2 + k4_T2);

Figure 2.37: Implementation of the 4th-Order Runge-Kutta Method for Thermal Simulation in C++

The following part of the code shows the console interface where the program prompts the
user to input four variables: torque, speed, rotor temperature, and stator temperature. These
inputs must lie within the interpolation dataset range:

Loaded CSV with 9600 rows.
Unique values: Torque [Nm] = 8 Speed [RPM] = 15 Temperature rotor [degC] = 15 Temperature copper [degC] = 5
Enter torque: |

Figure 2.38 shows the interpolated results printed to the console. These are the estimated
stator and rotor power losses at the specified operating point. This confirms that the interpola-
tion step was successful, and the data is ready to be used for thermal simulation.

Loaded CSV with 9000 rows.

Unique values: Torque [Nm] = 8 Speed [RPM] = 15 Temperature rotor [degC] = 15 Temperature copper [degC] = 5
Enter torque: 100

Enter speed: 3000

Enter tempeature rotor: 160

Enter tempeature copper: 100
Interpolated stator losses: 1140.3 W
Interpolated rotor losses: 922.9 W
Results written to P_losses.csv

Run again? (y/n):

Figure 2.38: Interpolated Stator and Rotor Power Losses at the Specified Operating Point
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Figure 2.39 shows the power loss values obtained via interpolation, compared to original
Simulink data, verifying the 4D interpolation done by the digital twin.

433 PWM_Torque:_ref 19981.99

PWM_Torque_ref Display_Stator_losses

14763 P PWM_Speed Staor_losses . slator_losses

Enter torque: 433
Enter speed: 14763
118 B WM Trctr Enter tempeature rotor: 118
Enter tempeature copper: 132

PWM_Speed stalor_losses

P Tk Interpolated stator losses: 19982 W
132 B P Teopper Interpolated rotor losses: 6026.61 W
Results written to P_losses.csv
PWM_Tcopper Display_Rotor_losses

Run again? (y/n): |

P Vic Rotor losses . rotor_losses

rotor_losses

i

P Tamb_air_C

Losses mode! EM3

Figure 2.39: Comparison of Power Loss Values from Interpolation and Original Simulink Data

Figure 2.40 shows a comparison between the thermal simulation results obtained from the
MATLAB implementation of the differential equations using the 4th-order Runge-Kutta method,
and the C++ implementation based on interpolated power losses.

The results demonstrate that the temperature evolution of both the stator and rotor is nearly
identical across both implementations, when using the same initial conditions and input values.
This confirms the numerical consistency between the MATLAB and C++ models and verifies
that both the interpolation logic and the Runge-Kutta solver in C++ are functioning as intended.

140 T T T T

T1 - Stator

T2 - Rotor

= = =T rotor C code
= == =T stator C code
TO - Ambient

120 +

100

Temperature [*C]
=
S

80

0 1000 2000 3000 4000 5000 6000 7000
Tid [s]

Figure 2.40: Comparison of Thermal Simulation Results from MATLAB and C++ Implementations
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Figure 2.41 shows that both stator and rotor losses increase nonlinearly with torque. Stator
losses grow much more sharply than rotor losses, indicating that the stator is more sensitive
to increases in torque. Since torque is the dominant mechanical driver of heat generation,
particularly for the stator, efficiency optimization should focus on torque smoothing or loss-
compensated control strategies.

e Rotor [0Sses === Stator l0sses
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S 1500.00 6000.00 S
(o) 3
= 1000.00 4000.00 @
500.00 2000.00
0.00 0.00
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Torque [Nm]

Figure 2.41: Nonlinear Increase of Stator and Rotor Losses with Torque

Figure 2.42 shows that T1 (stator temperature) rises faster and higher than T2 (rotor temper-
ature), particularly under high torque. T2 remains smoother, as the rotor exhibits a slower ther-
mal response due to its rotation and lower electrical stress.
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Figure 2.42: Comparison of Stator and Rotor Temperature Responses to Torque

Figure 2.43 shows that both stator and rotor losses increase with speed, though the stator
exhibits stronger sensitivity to changes in speed.
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Figure 2.43: Increase of Stator and Rotor Losses with Speed

Figure 2.44 shows that both T1 (stator temperature) and T2 (rotor temperature) increase with

speed, but T1 responds more sharply. This suggests that speed indirectly drives rotor heating
via thermal conduction.
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Figure 2.44: Nonlinear Increase of Stator and Rotor Losses with Torque

Figure 2.45 shows that stator losses increase significantly with rising copper temperature,
while rotor losses remain relatively flat.

e Rotor losses == Statorlosses
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Figure 2.45: Effect of Copper Temperature on Stator and Rotor Losses
Figure 2.46 shows that T1 (stator temperature) increases with initial copper temperature, start-

ing high and continuing to climb. In contrast, T2 (rotor temperature) remains low and stable,
indicating weak conductive or radiative interaction between the stator and rotor.
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Figure 2.46: Stator and Rotor Temperature Response to Initial Copper Temperature

Figure 2.47 shows that rotor losses increase steadily with rotor temperature, while stator losses

remain mostly unchanged. This indicates that rotor temperature has no meaningful influence
on stator losses.
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Figure 2.47: Effect of Rotor Temperature on Rotor and Stator Losses

Figure 2.48 shows that T2 (rotor temperature) begins at higher values based on the input and
climbs gradually, while T1 (stator temperature) remains stable. This suggests that rotor heat
does not significantly propagate to the stator.
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Figure 2.48: Nonlinear Increase of Stator and Rotor Losses with Torque

2.3 RHODAS DIGITAL TWIN FOR GEARBOX

This section describes the development, program and methods of the digital twin. The devel-
oped model is based around a dataset provided by Valeo. The model can simulate surface
temperature of the gearbox over time. The system is implemented in C++, employing both 3D
interpolation and the 4" order Runge-Kutta Method for accurate simulation of surface temper-
ature over time.

The TECM model of the system has been developed around the dataset provided by Valeo.
This dataset consists of 576 test cases, with variation to different parameters. The parameters
that are described in the system are as follows:

e [oad case

e Power Flow

e [nput power

e Mechanical loss

e Bearing loss

o Parallel Gear loss

e Hydraulic pump loss
o Speed Cut

o Power Cut

e Temperature

e Input Shaft speed.

e Input Shaft Torque

o System total Loss

o System total efficiency
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A screenshot of the dataset can be seen below:

Load Case ~ |Powerfiow - [input Power (W) . [Simustion Mechanical Power Loss (W) - Bearing - Parallel Gear - |ydisalic Pump (W) - |Speed Cut (W) - Pawer CUt(W)\ - Temp (°C) - [1 input shaft Speed (rpm) - [TTnpur shaft Torque (Nm]_ - |
16 551538 9781 2449 7332 E 305 205 10500 -502

Ipad_case144 16 551538 9305 1973 7332 305| 05 305
Ioad_case150 16 551538 9620 2411 7409 305| 305 305
Ioad_case288 16 551538 9343 1934 7409 305| 05 305
Ioad_case2sd 26 551538 8098 2161 5937 305| 305 305
load_casedd2 26 551538 716 1779 5937 305 305 305
Ioad_casedis G 551538 8116 2116 6000 305 305 305
Ioad_caseS76 26 581538 732 1733 8000 308 305 305 10500 502
Ioad casel2 503578 8849 273 6576 305 305 10500 456

Figure 2.49: Sample View of the Valeo Dataset Used for Gearbox Temperature Modeling

B8BBEREE

A simplified thermal model of the system has been developed based on the available simulated
data. According to the provided specifications, the internal components of the gearbox consist
of 80 kg of steel, while the housing is made of 45 kg of aluminum. In the model, these two
components are treated as solid bodies with no air gap between them, allowing for continuous
thermal conduction.

The model, illustrated in Figure 2.50, is constructed based on a highest temperature scenario,
where the temperature specified in the dataset reaches 90 °C. This provides a conservative
basis for thermal analysis and ensures the model remains robust under high-load conditions.
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Figure 2.50: Simplified Gearbox Thermal Model Based on Worst-Case Temperature Scenario

The system accepts user input for various individual loss components, which are then aggre-
gated into a total power loss value. This total loss is injected into the thermal model to simulate
heat buildup within the gearbox. According to the provided dataset, the maximum recorded
internal losses correspond to an internal temperature of 90 °C. Additionally, an ambient tem-
perature of 50 °C is assumed to represent a worst-case environmental condition.

The model subsequently simulates the development of the external surface temperature of the
gearbox casing over time. It should be noted that this is a simplified representation of the sys-
tem, developed based on several assumptions due to the lack of detailed physical and struc-
tural information about the actual gearbox.

The model is built around the following parameters, summarized in Table 2.1:

Table 2.1: Different functionalities of the RHODAS IOTP
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Component Value Unit
Aluminum weight 45 kg
Steel Weight 80 kg
Aluminum Thermal capaci- 45kg - 900 = 40500 JPK
tance
Steel thermal capacitance _ 0
(based on tool steel) 80kg - 460 = 36800 JPK
Thermal resistance 0.0039511 K/W

The model allows the user to input values for three key loss components that contribute to the
total power loss in the system:

e Hydraulic pump loss

e Bearing losses

o Gearlosses
Internally, all temperature calculations within the model are performed in Kelvin (K). How-
ever, appropriate conversions are applied to allow user input and output visualization in de-
grees Celsius (°C) for ease of interpretation.

To monitor and analyze the thermal behavior of the gearbox, the model includes scopes that
display both input and output data. These scopes enable users to observe the temperature
development of the system in real time throughout the simulation.

When testing the model with a total power loss input of 10,125 W, the resulting temperature
response is shown in Figure 2.51. This scope plot illustrates the simulated development of the
gearbox surface temperature over time under maximum load conditions.

Tin
B T ambient
Material temp

Temperaturs [Celeus]
8

w0 o

Figure 2.51: Simulated Gearbox Surface Temperature Response at 10,125 W Power Loss
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The simulation results show that the internal temperature of the gearbox stabilizes at approxi-
mately 90 °C, while the surface temperature of the housing settles around 70 °C. These values
appear to be within a reasonable range for high-load operating conditions (n/a, u.d.). It is im-
portant to note that the model developed is a simplified representation of a complex thermal
system. As it is based solely on material mass and a limited dataset, it does not fully capture
the real-world dynamics of a gearbox with intricate geometries and heterogeneous material
interactions. Furthermore, the model relies on assumptions regarding material properties, such
as the specific type of steel alloy used for internal components.

The interpolation functionality within the code is based on linear interpolation using three input
parameters:

e Torque (Nm)
e Shaft speed (Rpm)
e Temperature (°C)

These parameters define a three-dimensional space over which the model interpolates to es-
timate power loss and thermal behavior under various operating conditions.
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Figure 2.52: Visualization of Interpolation Parameters and Their Relationship to Total Power Loss

The interpolation parameters have been selected from the dataset provided by Valeo. Figure
2.52 presents 2D plots that illustrate the relationship between each selected parameter and
the corresponding total power losses. These plots indicate that the relationships are predomi-
nantly linear.
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Figure 2.53: 3D Plot of Interpolation Variables Versus Total Power Loss

In Figure 2.53, a 3D plot visualizes the combined effect of torque, shaft speed, and temperature
on total power losses. The overall trend also suggests linearity, with the exception of Figure
2.53- 2.2, which exhibits a parabolic shape. This deviation arises from the torque values rang-
ing between —502 Nm and 502 Nm, indicating that the gearbox was operated in both rotational
directions during testing.

The interpolation uses three columns from the dataset and the total losses to create a 3D linear
interpolation. The values from the dataset are saved in a separate CSV file that is included in
the C++ code. Each of the unique values in each column (except the total power losses) are
saved in a lookup table. When the user inputs values for each of the three variables, the code
interpolates between the closest points to the input values and calculates an estimated power
loss, based on the 4 columns.

To evaluate the interpolation model, three test cases will be considered: low power loading
condition input, medium power loading condition input, and high-power loading condition input.
The input power in the test data ranges from 2,284 W to 551,538 W. Testing will involve se-
lecting values for the three input parameters within the following power ranges: 2,284-176,766
W, 186,385-373,173 W, and 407,659-551,538 W. Table 2.2 summarizes the conditions for
the first case, corresponding to the low power loading condition.

Table 2.2: Parameters and Conditions for Low Power Loading First Test Case
Case 1 - low power
Parameter Values Unit

Torque 384 Nm
Shaft speed 3341 RPM
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Tempera- 87 °C
ture

Interpolated 2699 5 W
loss

Enter the shaft torque (Nm): 384
Enter the shaft speed (rpm): 3341

Enter the temperature (degC): 87
Interpolated value = 2699.48U4375

The interpolated value is calculated as 2,699 W. When comparing this to adjacent values from
the dataset, we find a test case (load_case272) that matches the values shown in Table 2.3.

Table 2.3: Parameter Values for Test Case (load case272) in the Dataset

Load case272
Parameter Values Unit
Torque 414 Nm
Shaft speed 2900 RPM
Tempera- 90 °C
ture
Interpolated 2601.6 W
loss

By examining another load case with parameters slightly above those we used, we find
load _case411, which corresponds to the parameter values shown in Table 2.4.

Table 2.4: Parameter Values for Test Case (load_case411) in the Dataset

Load _case411
Parameter Values Unit
Torque 371 Nm
Shaft speed 4800 RPM
Tempera- 80 °C
ture
Interpolated 2949.1 W
loss

As shown in Table 2.5, the interpolated value is correctly positioned between these two cases,
closer to load_case272.

Table 2.5: Parameter Values for Test Case (load case411) in the Dataset

Case 2 - medium power
Parameter Values Unit
Torque 355 Nm
Shaft speed 7500 RPM
Tempera- 84 °C
ture
Interpolated 5053.6 w
loss

Adjacent cases, load_case130 and load_case108, have the parameter values shown in Table
2.6.
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Table 2.6: Parameter Comparison of Adjacent Cases (load_casel130 and load_case108)
Load_case130
Parameter Values Unit

Torque 414 Nm
Shaft speed 6700 RPM
Tempera- 80 °C

ture
Interpolated 5416.7 w
loss

Load case108
Parameter Values Unit

Torque 240 Nm
Shaft speed 10500 RPM
Tempera- 80 °C

ture
Interpolated 4509.3 W
loss

Case 3, the high-power loading condition, is summarized in Table 2.7.

Table 2.7: Parameters for High Power Loading Condition (Case 3)

Case 3 - high power
Parameter Values Unit
Torque 376 Nm
Shaft speed 8500 RPM
Tempera- 85 °C
ture
Interpolated 5947.4 W
loss

Adjacent cases, load_case130 and load_case108, have the values and parameters shown in
Table 2.8.

Table 2.8: Parameter Values of Adjacent Cases (load _case130 and load_case108) for Case 3 Comparison
Load_case130

Parameter Values Unit
Torque 414 Nm
Shaft speed 10500 RPM
Tempera- 80 °C
ture
Interpolated 7841.5 w
loss

Load_case 108
Parameter | Values | Unit
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Torque 414 Nm
Shaft speed 6700 RPM
Tempera- 90 °C

ture
Interpolated 5437.0 w
loss

The differential equation is derived from the simplified Thermal Equivalent Circuit Model
(TECM). It takes the following form:

_t PR R —
T(t) = Tamb + (TO _ Ta.mb) e Bih Cih_tot + 1 th (1 —e Ain Cih_tot )
Ctll tot

By applying the Runge-Kutta method, the differential equation is transformed into the following
numerical format:

ki = h * temperature_change(T, T amb, P _loss, C_th tot, R_th);

k2 = h * temperature_change(T + ©.5 * ki, T amb, P _loss, C th tot, R _th);
k3 = h * temperature _change(T + 8.5 * k2, T amb, P loss, C th tot, R _th);
ka = h * temperature change(T + k3, T amb, P loss, C th tot, R th);

T=T+ (ki1 +2*k2+2%k3+ka)/ s;

To validate the numerical implementation against the results obtained from the developed
Thermal Equivalent Circuit Model (TECM), the function is plotted using a power loss input of
10,125 W. The resulting temperature progression is presented in Figure 2.54.
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Figure 2.54: Temperature Progression Based on Numerical Implementation with Power Loss Input of 10,125 W

The temperature of the mathematical model stabilizes at approximately 70 °C, exhibiting the
same dynamic behavior as observed in the TECM simulation. This confirms that the developed
mathematical model accurately reflects the behavior of the simulated TECM.
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The development of the C++ code includes two main components: the implementation of a
standalone interpolation method and the translation of the MATLAB-based thermal model into
C++. The complete code will not be detailed in this document. The program utilizes three-
dimensional linear interpolation to compute power losses and applies the 4th-order Runge-
Kutta method to simulate the temperature evolution over time.

The workflow of the C++ code is as follows:

Load Dataset

Wait for user input to Torque.

Wait for user input to Shaft Speed

Wait for user input to Temperature.

Interpolate the system power loss.

Compute the temperature development and output the temperature at each second.

If any of the input values fall outside the valid range, the program will display an error message
indicating that the input is out of bounds, as shown below:

ook wh=

if (interp == 0.8) {
int k = 404;

printf("input(x, y, z) = (%f, %f, %f) which is outside look-up table --» therefore error %i\n", input[@], input[1], input[2], k);

The boundary values are defined by the upper and lower limits of the lookup table, which are
specified at the beginning of the code. These values can be modified by adjusting the boundary
values and updating the CSV files used for the lookup table.

Upon first execution, the program will attempt to open the CSV file as follows:

FILE

if (file )
fprintf(stderr,
return 1;

If the program fails to open the CSV file, it will report an error in the terminal. If the dataset
(CSV file) is changed, the file name should also be updated accordingly in the code; otherwise,
the program will continue to fail, as shown below:

, 65, -22, 22, 65, 109, 153, 19, 240, 284, 327, 371, 414, 458, 502},

In the initial lines of the interpolation code, the unique values for each of the aforementioned
parameters must be defined. This means that if the dataset used for interpolation or the digital
twin (DT) is modified, the values must be rechecked or adjusted to align with the new dataset,
should they differ from the original.

The definitions for the interpolation parameters can be found at the beginning of the code (lines
10-20), as shown below:
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NX = 24;

Ny
Nz 722

ROWS = 288;

COoLS = 4;

Table[288][4];

interp;

input[3];

Lin_interp3( input[3]);

This includes the number of unique data points in each vector (Torque, Temperature, and Shaft
Speed, in that order), the total number of unique combinations (24 x 6 x 2 = 288), and the
number of columns in the lookup table. In this interpolation, an external lookup table is utilized,
stored in a CSV file named "Gearbox_interp.csv."

In line 17, the dimensions of the lookup table are defined. Line 18 defines the float for the
interpolation, while line 19 specifies the number of inputs. If the number of inputs changes, this
value should be updated accordingly. Similarly, the value in line 20 should also be adjusted if
necessary.

Line 48 checks whether the input values fall outside the lower and upper bounds of the lookup
table and returns an error if this is the case. If the input values are within bounds, the code
proceeds to search the lookup table for the closest points to the input values and interpolates
the system losses based on the table (as shown in the subsequent part of the code):

Diff() {

hi—13
num_steps = 1500;

> temperatures = runge_kutta(Te, T_amb, interp, C_th_tot, R_th, h, num_steps);

if (interp == 0.8) {
k = 4
printf("input( z) (%F, %f, %F) ou ok-up table --> t re error %#i\n", input[e@], input[1], input[2], k);
} else {

printf(”Inte lue = %f\n", interp);

for ( i= i num_steps; ++i) {
printf(“Te re: %f\n", temperatures[i]);

return @;

The differential equation is used to calculate the temperature development within the system.
By modifying the integer value in line 189, the simulation runtime can be adjusted accordingly.
The code is configured in debug mode, where the terminal outputs the interpolated value and
the temperature at each second of the specified runtime (in this case, 1500 seconds). This can
be disabled by commenting out lines 203-205. To suppress the printed interpolation values,
lines 195-200 should be disabled.

Initial parameters of the system are defined in lines 22-30 in the following section of the code:
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C_th Al = 4@500;
C th St - 36800;
t C th tot = C th St + C th Al;

oat R_th = ©.88197555;

As specific values for these parameters have not been provided, assumptions were made in
their determination. Despite this, the model demonstrates a reasonable level of accuracy when
compared to the developed thermal equivalent model.

Upon execution, the program will open a terminal window and prompt the user for three input
values: torque, shaft speed, and temperature.

C:\Users\jespe\OneDrive - Aai X =+ |

Enter the shaft torque (Nm): 502
Enter the shaft speed (rpm): 10500
Enter the temperature (degC): 80|

In future developments, with increased connectivity to sensors, this input method should be
disabled and replaced with direct sensor connections.

Once the inputs are provided, the system will display the interpolated values, followed by the
calculated temperatures, as shown below:

Enter the shaft torque (Nm): 502
Enter the shaft speed (rpm): 10500
Enter the temperature (degC): 80
Interpolated value = 9609.900391
Temperature: 50.000000
Temperature: 50.123913
Temperature: 50.247017
Temperature: 50.369320
Temperature: 50.490822
Temperature: 50.611530
Temperature: 50.731453
Temperature: 50.850594
Temperature: 50.968956
Temperature: 51.08654l
Temperature: 51.203365
Temperature: 51.319424
Temperature: 51.434727
Temperature: 51.549274

The calculated temperatures will be displayed for each time step until the specified runtime
duration is reached.

A sensitivity analysis of the gearbox digital twin was conducted to evaluate the system's be-
havior and investigate its boundaries. The tests involved varying one of the three input varia-
bles (torque, shaft speed, or temperature) along with the ambient temperature, while keeping
the other parameters constant. After each test, the final temperature reading and the interpo-
lated power loss were recorded. These results were then plotted in a combined plot. The anal-
ysis led to the following four tests:
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Table 2.9: Data Sets for Power Losses and gearbox Temperature Response to Torque Variations

Test no. Torque | Temperature | Shaftspeed | Ambient temp Power Temperature

[Nm] [°C] [RPM] [°C] losses [W] [°C]
1 62 80 8600 50 1308.93 52.59
2 124 80 8600 50 2118.33 54.18
3 187 80 8600 50 3021.56 55.97
4 249 80 8600 50 3955.36 57.81
5 312 80 8600 50 4953.51 59.79
6 374 80 8600 50 5964.78 61.78
7 437 80 8600 50 7033.57 63.89
8 499 80 8600 50 8093.81 65.99

Table 2.10: Data Sets for Power Losses and gearbox Temperature Response to internal Tem

erature Variations

Test no. Torque | Temperature | Shaftspeed | Ambient temp | Power losses | Temperature

[Nm] [°C] [RPM] [°C] (W] [°C]
1 205 80 8600 50 3290.02 56.50
2 205 81 8600 50 3288.59 56.50
3 205 82 8600 50 3287.15 56.49
4 205 84 8600 50 3284.27 56.49
5 205 85 8600 50 3282.83 56.49
6 205 86 8600 50 3281.39 56.48
7 205 88 8600 50 3278.51 56.48
8 205 89 8600 50 3277.08 56.47

Table 2.11: Data Sets for Power Losses and gearbox Temperature Response to shaft speed Variations

Test no. Torque | Temperature | Shaftspeed | Ambient temp | Power losses | Temperature

[Nm] [°C] [RPM] [°C] (W] [°C]
1 205 80 1000 50 488.79 50.97
2 205 80 2500 50 1063.02 52.10
3 205 80 4000 50 1581.91 53.12
4 205 80 5500 50 2105.48 54.16
5 205 80 7000 50 2664.33 55.26
6 205 80 8500 50 3250.92 56.42
7 205 80 10000 50 3732.14 57.37
8 205 80 10500 50 3890.04 57.68

Table 2.12: Data Sets for Power Losses and gearbox Temperature Response to ambient Temperature Variations

Test no Torque | Temperature | Shaftspeed | Ambient temp |Power losses | Temperature
| [Nm] [°C] [RPM] [°C] [W] [°C]
1 205 80 8600 -30 3290.02 -23.50
2 205 80 8600 -15 3290.02 -8.50
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3 205 80 8600 0 3290.02 6.50
4 205 80 8600 15 3290.02 21.50
5 205 80 8600 30 3290.02 36.50
6 205 80 8600 45 3290.02 51.50
7 205 80 8600 60 3290.02 66.50
8 205 80 8600 75 3290.02 81.50

Figures 2.55 to 2.58 depict the results of the sensitivity analysis conducted to evaluate the
gearbox digital twin's behavior and investigate system boundaries. Figure 2.55 shows the re-
sults of the sensitivity analysis for power losses and gearbox temperature in response to torque
variations. Figure 2.56 illustrates the power losses and gearbox temperature response to in-
ternal temperature variations. Figure 2.57 highlights the power losses and gearbox tempera-
ture response to shaft speed variations. Finally, Figure 2.58 demonstrates the power losses
and gearbox temperature response to ambient temperature variations. These plots provide
insights into the linearity of the system's response under varying conditions.

Changing torque
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Figure 2.55: Power Losses and gearbox Temperature Response to Torque Variations
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Changing internal temperature
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Figure 2.56: Power Losses and gearbox Temperature Response to internal Temperature Variations

Changing Shaft Speed
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Figure 2.57: Power Losses and gearbox Temperature Response to shaft speed Variations
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Changing ambient temperature
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Figure 2.58: Power Losses and gearbox Temperature Response to ambient Temperature Variations

From all the tests, we observe a good linear relationship between both power loss and tem-
perature as the input variables change. However, when adjusting the internal temperature of
the gearbox, we find that this leads to a decrease in both power loss and temperature. Despite
this, the linearity remains. When changing the ambient temperature, we notice that it does not
affect the power loss, but it does influence the final temperature. While the resulting plots ap-
pear perfectly linear, this is a consequence of the varying step sizes used in the tests.

As discussed, the three digital twins developed in Task 4.3 of WP4 in the RHODAS project are
summarized in Figure 2.59. This figure illustrates the structured inputs and outputs for each of
the digital twins, which include the inverter, e-motor, and gearbox models.

Inputs

Output

Inverter switching freqUency (H2) | e Tj-$iC1 (°C) |Tj: Junction temperature of the
- > : transistors.

Inverter Output Current — Branch 1 (A) Do v T}.51C6 (°C) I\rIa]:m Z:st ) t .
Inverter Output Current — Branch 2 (A)/ = . . L Tj-GaN1 (5C) ote  tha ": fave ]‘1"’(1) lN
Inverter Output Current — Branch 3 (A)) se——-1 Dlgltal Twin . g:i::z: i:;achs fmgirha el Ga

InverFer modulation index | m——] ’Tj—G.aN18 °C) . '

Ambient temperature (°C) ) m——]

Inputs
Hydraulic pump power (W) ————| Output
Input power(W) |=———— Gearbox Gearbox
Gearbox Housing Temperature (°C) | =] Digital Twin Temperature (°C)

Input shaft speed(rpm) |=———-
Ambient temperature (°C)) m——

Inputs

Motor reference torque (NIM) | m—-
Motor temperature (OC) fmm— E-Motor

Motor speed(Ipm) | m——] Digital Twin

Copper temperature (°C) j——p-

Temperature of the stator (°C)

Temperature of the rotor (°C)

Ambient temperature (°C) ) m——-

Figure 2.59: Overview of Inputs and Outputs for the Inverter, E-Motor, and Gearbox Digital Twins
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3 CONCLUSION

The digital twin developments presented in this document mark a step forward in enhancing
the design, analysis and operational efficiency of the RHODAS electromechanical powertrain.
By focusing on three key subsystems—the T-type inverter, e-Motor, and gearbox—Task 4.3
has delivered a modular and scalable digital twin framework capable of simulating thermal
behavior, predicting performance issues, and supporting virtual testing under realistic operat-
ing conditions. Through the integration of power loss modeling, thermal equivalent circuit ap-
proaches and numerical methods, each digital twin provides a virtual representation of its re-
spective physical counterpart. These models not only support real-time condition monitoring
and predictive maintenance but also lay the foundation for future system-level co-simulation
and control strategies.

The results achieved within this task can contribute to the broader RHODAS vision of creating
a more efficient, reliable and intelligent powertrain platform. The methodologies and tools de-
veloped here will support the ongoing integration, validation and optimization of the complete
RHODAS system in subsequent project phases.
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Appendix A — SIC-CAB450M12XM3 from Wolfspeed Cree

v 1200V

CAB450M12XM3 I 450 A
1200V, 450A All-Silicon Carbide
Conduction Optimized, Half-Bridge Module

Technical Features Package 80 x 52 x 19 mm

+ High Power Density Footprint

+ High Junction Temperature (175 “C) Oparation

+  Low Inductance (6.7 nH) Design

+ |Implements Conducticn Optimized Third
Generation 5iC MOSFET Technology

« Silicon Nitride Insulator and Copper Baseplate

Applications

+ Motor & Traction Drives

+ Vehicle Fast Chargers

+ Uninterruptable Power Supplies

« Smart-Grid / Grid-Tied Distributed Generation

System Benefits

+  Terminal layout allows for direct bus bar connection without bends or bushings enabling a simple,
low inductance design.

+ |solated integrated temperature sensing enables high-level temperature protection.

+ Dedicated drain Kelvin pin enables direct voltage sensing for gate driver avercurrent protection.

Key Parameters (T_= 25" C unless otherwize specified)

Symbol | Parmmeter Min. TYP. Max. | Unit Test Condithons Miote
Vese | Drain-5ource Violtage 1200
Visem | Gate-Source Voltage, Masimum Value -4 +19 v AC frequency = 1Hz Mote 1
= S Voltag cx
Veseo uatg:-::-urn:e Voltage, Recommended +15 Static
COp. Value
450 V=15V, Te=28"C, Ty =175 "C | Fig. 20
lps DC Continuous Drain Current .L — _': - = — -
409 V=15V, Te=30"C, Ty =175 "C | Hote 2
les DOC Source-Drain Current 450 A Vee=15W Te=25"C, Ty=1T6"C
lznpn | DIC Source-Drain Current (Body Diode) 225 ' Ves=-4W, Te=25"C, Tw=17T5"C
lnz (ks | Maximum Pulsed Drain-5ource Current 900 Eomeae It DY T
l=p ke | Maximum Pulsed Source-Drain Current 500 Ve =15W, Te=25"C
Maximum Virtual Junction
Twoe | Temperature under Switching -40 175 *C
Conditions

Motel  IFMOSFET body diode Is not used, ¥, =-8/+15V

Mote2  Assumes Ry, - 0.11%CW and R, - 4.6 mi. Caloulate Py = (T, - T3/ Ry, - Calculate |, o =P, R
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MOSFET Characteristics (Per Position) [T_

F.

" uniless otherwise specified)

symbal

Parameter

Typ-

Unit

Test Conditions Hote

W inpos

Crain-Source Breakdown Voltage

1200

0, |p = 200 psy

1.8 15 3B v Vos =V, o= 132 mA
Vo | Gate Threshold Voltage
210 Ilu'.| g = W, || 132mA T, 15 °C
- fero Gate Voltage Drain Current = i) Ve =0V, Vg = 1200
A
Py Gate-Source Leakage Current 0.05 1.3 Vo= 15V W =0V
- - - P 75 27 Ve = 15W =450 A
. Drain-Source On-State Resistance (Devices e P o= 4504 Fig. 2
i Crmls o N . - - R —— ]
Only: 45 Ves=15V, =450 A, T,= 175"C Fig. 3
355 Ilu'.| L 20 I: 1 450 4
Ex lransconducance <) Fig. 4
360 Vos= 20, l==450 &, T,=1T5"C
Turn-Cin Switching Energy, T,=25"C 1.0
Ecr T,=135"C 117 Vos =600,
I,=17T5"C 130 o= 4504, Fie 11
— (T AU L
e . - o ] . J L LIE = S | i: ._:
Turn-Off Switching Energy, T,=25"C 10.1 R =000, o
[ 2L 112 o
Es I,=125"C 113 126 uH
T,=17T5"C 12.1
R nternal Gate Resistance 15 {}
C nput Capacitance 380
o putlap nF | Vs =0V, Vos = 800V
o Output Capadtance 1.5 Fig. 9
_ _ ~ _ _ Ilu'.J,_ Fomy, I 100 kHz
Coa Reverse Transfer Capadtance S0 pk
- ke b S el harpe LI
— ST o AT — Vos =B00Y, Ves = 4W/10Y
Oz | Gate to Drain Charge 500 e | b, =450 A
— Per IECE0T4T-B-4 pg 21
Qs otal Gate Charge 1330
Ry | FET Thermal Resistance, Junction to Case 011 | 013 | "Ciw Fig. 17

Body Diode Characteristics (Per Position) [T_= 25" C unless otherwise specified)

Symbaol

Parameter

Typ.

Unit

Test Conditions

. - - | 4.7 . ¥, AW, 1, 4504 )
Ve | Body Dicde Forward Violtage W _ — Fig. 7
4.2 Vo, =N | =450A, T =175"C
t, Reverse Recovery Time 52 ns
- - : - . 4504,V =600V
Q. | Reverse Recovery Charge 6.6 L B e !
difdt=8M/ns, T = 1T5"C
Peak Reverse Recovery Current 195 A

Reverse Recovery Enenpy T,=25"C
¥ 4

T,=125"C

T,=175*C

Vee
Vo

ASOA,

R =0.002,

s00V, |
4W/15V,
3.6 uH
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Temperature Sensor (NTC) Characteristics

symbol | Parameter Min. Typ. Max. Linilt Test Conditions:
Rz Rated Resiztance 47 k1 Tpe=25"C
AR/R | Tolerance of R +1 %%
P Maximum Poweer Dissipation 50 iy
) . . . 1 R i3 &
Steinhart-Hart Modified Coefficients for R/T Computation: == A+ 8 % 1n (—} + C ® In* [iﬂ—:] + 0 % In” {H—}
I &5 25 25

A B C v

T .=257C 3 3540E-03 2 001 3E-04 5.0BLZE-D& 2187TE-OT

L

T,

L)

22550 3.3540E-03 2.0013E-04 5.0B52E-0G 2.1a7TE-OT

Maodule Physical Characteristics

symbol | Parameter Min. Typ. Max. Linilt Test Conditions:
Raa Packape Resistance, M1 (.72 ) T_=125"C, Note 3
- - — mi} 1= —
Ris | Package Resistance, M2 0.63 -=125"C, Note 3
L, Stray Inductance 6T nH Between Terminals 2 and 3
I Case Tempemature 40 125 "C
W Weignt 175 E
o 2 30 4.0 Baseplate, M4 bolts
M Mounting Torgue - N-m ——
‘ 2 40 5.0 Power Terminals, M5 bolis
W Case Isolation Voltape 4.0 4 AC, 50 Hz, L min
CTl | Comparative Tracking Inde:x 600
125 From 2 to 3, Maote 4
B 115 From 1 to Baseplate, Mote 4
Clearance Distance —
57 From 2 to &, Mate 4
137 From 5 to Baseplate, Mote 4
mm
14.7 From 2 to 3, Mate 4
_ . 14 From 1 to Baseplate, Mobe 4
Creepage Distance
14.7 From 2 to &, Mate 4
143 From 5 to Baseplate, Mote 4

-
(=]
m
Lid

']
s
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Typical Performance
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DETAIL «
SECTION ee SCALE 411

Supporting Links & Tools

-

s CGRIZHEXMP: XM3 Evaluation Gate Driver
«  CGDIZHE00D: Differentizl Transceiver Board for CGO1ZHBXMP

CROGOODOATZE-XMT 200 kW Inverter Kit for © Auction-Ointin

«  KIT-CRD-CIL1ZM-¥M3: Dynamic Performance Evaluation Board for the ¥M3 Module (CPWR-AN31)

«  CPWR-AN29: Thermal Interface Material Application Note

MNotes

= This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human
body nor in applications in which failure of the preduct could lead to death, personal injury or property damage, including
but not limited to equipment used in the operation of nudlear facilities, [fe-support machines, cardiac defibrillators or similar
emerpgency medical eguipment, aircraft navigation or communication or control systems, or air traffic control systems.

= The SiC MOSFET module switches at speeds beyond what is customarily associated with KSET-based modules. Therefore, special
precautions are required to realize optimal performance. The interconnection beteeen the gate driver and module howsing
needs to be as short as possible. This will afford optimal switching time and avoid the potential for device oscillation. Also, great
care is required to insure minimum inductance between the module and 0T link capadtors to avoid excessive VDS overshoot.

Rew. A, 2019-06-01 CABASOM12XM3 4600 Silicon Dr., Durham, NC 27703
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree loge, Wolfspeed®, and the Wolfspeed logo
are registered trademarks of Cree, Inc.
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Appendix B — GaN-GS66516T from GAN systems

G@ Systermns

GS566516T

Top-side cooled 650 V E-mode GaN transistor

Datasheet

Features

Top-side cooled configuration

Roseey = 25 mi

Isimasy = 60 A

Ultra-low FOM die

Lowe inductance GaMPxy® package

Simple drive requirements (0 W to & V)
Transient tolerant gate drive [-20 / +10 W)
Wery high switching frequency (> 10 MHz)
Fast and controllable fall and rise imes
Reverse current capability

Zero reverse recovery loss

Small 9.0 x 7.6 mm* PCE footprint

Dual gate pads for optimal board layowt
RoHS 3 (6+4) compliant

Applications

AC-DC Comverters

DC-DniC Converters
Bridgeless Tatern Pale PRC
Imverters

Energy S5torage Systems
Omn Board Battery Chargers
Uninterruptable Power Supplies
Solar Energy

Industrial Motor Drives
Laser Dirivers

Traction Drive

Wireless Power Transfer

G50 V enhancement mode power transistor

Package Outline

Circuit Symbaol

-
g

The thermal pad is infernally connected to
Sowrce (5 pin 3) and substrate

Description

The G586516T is an enhancement mode GaM-on-
silicon power transistor. The properties of Gal
allows for high current, high woltage breakdown and
high switching frequency. GalM Systems innovates
with  industry leading advancements such as
patented Islamd Technology® and GaMNPX®
packaging. Island Technology® cell layout realizes
high-current die and high yield. GaNPxX® packaging
enables low inductance 8 low thermal resistance in
a small package. The G566516T is a top-side cooled
tramsistor that offers wery low junction-to-case
thermal resistance for demanding high power
applications. These features combine to provide

wvery high efficiency power switching.
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G@ GS66516T
Top-side cooled 650 V E-mode GaN transistor
Datasheet
Absolute Maximum Ratings (Tese = 25 °C except as noted)
Parameter Symbaol Walue Unit
Cperating Junction Temperature T -55 to +150 i
Storage Temperature Range Tg -55 to +150 i
Diraim-to-Source Voltage Vios G50 W
Transient Drain-to-5Source Woltage (Mote 1) V osrarnient 750 W
ate-to-Source Voltage Vs -1tz =7 W
ate-to-Sopurce Voltage - transient (Mote 1) Wz prarnient -20to +10 W
Continuous Drain Current (T uee=25 ") los 2] A
Continuous Drain Current (T wme="100 "C) los A7 A
Pulse Drain Current (Pulse width 50 ps, Ve = 6 V)
(Mote 2] o Pudse 120 A

(1) For £ 1 ps

(2} Defined by product design and characterization. Value is not tested to full current in production.

Thermal Characteristics (Typical values unless otherwise noted)

Parameter Symbol Walue Units

Thermal Resistance (junction-to-case) — top side Bauc 027 CSW

*aximum Soldering Temperature [M5L3 rated) Teoap 260 *C

Ordering Information

Ordering Packing Reel Reel
FPackage type ot _ _

code g=tvp method ! Diameter Width

G5G6516T-TR GaMex® Top-Side Cooled Tape-and-Fee 3000 13 16mim

{330mrm]
G566516T-MR GaMex® Top-Side Cooled *ini-Reel 250 7 (180 mm) 16mim
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G@ e GS66516T
' Top-side cooled 650 V E-mode GaN transistor

Datasheet

Electrical Characteristics (Typical values at T, = 25 *C, Vas = 6 V unless otherwise noted)

Parameters Sym. | Min. | Typ. | Max. | Units | Conditions
Drain-to-Source Blocking Voltage Vieuoss | 650 W Was = 0V, lpgz = 100 pA
Vos=6BWT)=25"C
Draim-to-Source On Resistance Posyees 25 32 1314 : )
’ m=18 A
Draim-to-Source On Resistance Posyees G5 1314 Vas=6V. Ti=1507°C
’ m=18 A
(ate-to-Source Threshold Viassg 1.1 1.7 2.6 W Vs = Vis
s = 14 mA
(ate-to-Source Current lag 320 A Vas =6V V=0V
(zate Plateau Voltage Vot 30 W Wipg = 400V, Ipg = 60 A
. Wiog = 650 W
Draim-to-Source Leakage Current lpes 4 100 A Vi = OV, T)= 25 °C
. Wog = 650 W
Draim-to-Source Leakage Current lpes 200 pA Vas = OV, Ty = 150 °C
Internal Gate Resistance Rz 03 0 f = 5 MHz, open drain
Input Capacitance L 518 F
P = P | Vo= 400V
Cutput Capacitance Cosc 126 pF Ves =0V
i f=100kHz
Reverse Transfer Capacitance Chag 54 pF
Effective Output Capacitance
) . Coesy 207 pF
Energy Related (Mote 3) Ves =0V
Effective Output Capacitance Wos = 0 to 400 W
Time Related (Mote 4) Comy 333 PF
Total Gate Charge Qs 14.2 i
Woe=0to 6 W
Gate-to-Source C 5 3B i
ate urce Charge Qs n Vs = 400 V
(zate-to-Dirain Charge Oao 54 niC
Cutput Charge Oloss 134 i Was = 0V, Vs = 400V
Reverse Recovery Charge Orn 0 niC

{3} Coyem is the fixed capacitance that would give the same stored energy as Cese while Vpe is rising from 0 W to the
stated Vs

{4} Cogy is the fined capacitance that would give the same charging time as Caes while Ve is rising from 0V 1o the
stated Vs
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G@ N GS66516T
' Top-side cooled 650 V E-mode GaN transistor

Datasheet

Electrical Characteristics continued (Typical values at T) = 25 *C, Vs = 6 V unless otherwise

noted)
Parameters Sym. | Min. | Typ. | Max. | Units | Conditions
Tum-Cn Delay oo 46 ns
. . Voo = 400 W
Rise Time tq 12.4 ns Ves=0-6V
Tumn-Off Delay truem 149 nz o =16 A Rgemy = 502
Ti= 25 *C [Mote §)
Fall Time t- 22 ns
. Vs = 400V
Chutput C itance 5t
E:Er::-u apacitance Stored Ece 17 o Vez =0V
¥ f = 100 kHz
Vs =400V, Ips = 20 A
Switching Energy during turn-on F o 1341 11 Vez=0-BY
Raem = 10 0, Rawern = 1
f
Switching Energy during turm-off Eom 17 [T L=120pH

Ly = 2 nH {Notes &, T)

{5 See Figure 16 for tming test circuit diagram and definition waveforms
[6) Ls = parasitic inductance

{71 S5ee Figure 17 for switching loss test circuit
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GS66516T
Top-side cooled 650 V E-mode GaN transistor
Datasheet

Electrical Performance Graphs

los ¥s. Ve Characteristic

Figure 1: Typical los vs. Vos @ T, = 25 °C

los vs. Wos Characteristic
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Figure 2: Typical lps vs. Vios @ T, = 150 °C

Rotiary V5. los Characteristic

lora K81
Figure 3: Rosion V5. lps at T) = 25 °C
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Figure 4: Rosien V5. los at T) = 150°C
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GS66516T

Top-side cooled 650 V E-mode GaN transistor

Datasheet

Electrical Performance Graphs

Iz ws. Vos, T) dependence
200

Vo =B Y 75

180

160

a 1 2 3 & 5

Figure 5: Typical lps vs. Vos @ Ves =6 W

zate Charge, Qs Characteristic

)
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O (riC

Figure &: Typical Vas vs. Qs @ Vps =100, 400V

Capacitance Characteristics
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Figure 7: Typical Ciss, Coss, Cres Vs VWis

Stored Energy Characteristic
3.5E-05

A0E-05
2.5E-06

= 2.0E-05

1.0E=05
3.0E-06

O.0E+QD
o 10 200 300 400 520 GO0
Vs (V)

Figure & Typical Cas: Stored Energy




D4.3. Definition and implementation of a holistic digital twin of the IMD

Version v.6

ZZRHODAS

G566516T

Top-side cooled 650 V E-mode GaN transistor

Datasheet

Electrical Performance Graphs

Reverse Conduction Characteristics

T,e85°C Wi = Y

Lo 18

125

i) F E i L] 10
e 141

Figure 9: Typical lzn vs. Ve (T)= 25 °C)

Reverse Conduction Characteristics
140
T,= 150G

Y]

i [V

Figure 10: Typical lso vs. Ven (Ty;= 150 °C)

los ws. Wz Characteristic

el i

Voa= 10V T,= 25

|pes (41

Vs V]

Figure 11: Typical los ws. Vs

MNormalized Rospeny s T)

Hirmiahz ad Fdscn &t 25°C

28 &f S 100 925 150
Tersparalung 1)

Figure 12: Mormalized Rpspn as a function of
T
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G@ GS66516T
' Top-side cooled 650 V E-mode GaN transistor

Datasheet

Thermal Performance Graphs

los vs Wos S0A Power Dissipation Temperature Derating

el
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Figure 13: Safe Operating Area @ Tewe = 25 °C Figure 14: Derating vs. Case Temperature
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Figure 15: Transient Thermal Impedance
(.00 = Mominal OC thermal impesdance)
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G566516T

Systerns
G@ Top-side cooled 650 V E-mode GaN transistor

Datasheet

Test Circuits

Rz
o AN
L
ok

Figure 1&: switching time test circuit

I b
§ il
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Figure 18: Switching Loss Test Cirouit
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